3.4.79 \(\int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [379]

3.4.79.1 Optimal result
3.4.79.2 Mathematica [A] (verified)
3.4.79.3 Rubi [A] (verified)
3.4.79.4 Maple [B] (verified)
3.4.79.5 Fricas [B] (verification not implemented)
3.4.79.6 Sympy [F]
3.4.79.7 Maxima [C] (verification not implemented)
3.4.79.8 Giac [B] (verification not implemented)
3.4.79.9 Mupad [F(-1)]

3.4.79.1 Optimal result

Integrand size = 23, antiderivative size = 70 \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{f} \]

output
arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))*a^(1/2)/f-arctanh((a+b*sec(f*x+e 
)^2)^(1/2)/(a+b)^(1/2))*(a+b)^(1/2)/f
 
3.4.79.2 Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00 \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{f} \]

input
Integrate[Cot[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f - (Sqrt[a + b]*Arc 
Tanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]])/f
 
3.4.79.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4627, 25, 354, 94, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (e+f x)^2}}{\tan (e+f x)}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle \frac {\int -\frac {\cos (e+f x) \sqrt {b \sec ^2(e+f x)+a}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \sqrt {b \sec ^2(e+f x)+a}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \sqrt {b \sec ^2(e+f x)+a}}{1-\sec ^2(e+f x)}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 94

\(\displaystyle -\frac {(a+b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)+a \int \frac {\cos (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {2 (a+b) \int \frac {1}{\frac {a+b}{b}-\frac {\sec ^4(e+f x)}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}+\frac {2 a \int \frac {1}{\frac {\sec ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{2 f}\)

input
Int[Cot[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
-1/2*(-2*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]] + 2*Sqrt[a + 
b]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]])/f
 

3.4.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 94
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[(e + f*x)^(p - 1)/(a + b*x), x], 
x] - Simp[(d*e - c*f)/(b*c - a*d)   Int[(e + f*x)^(p - 1)/(c + d*x), x], x] 
 /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
3.4.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(539\) vs. \(2(58)=116\).

Time = 1.35 (sec) , antiderivative size = 540, normalized size of antiderivative = 7.71

method result size
default \(\frac {\sqrt {a +b \sec \left (f x +e \right )^{2}}\, \left (2 \sqrt {a}\, \ln \left (4 \cos \left (f x +e \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a}+4 \cos \left (f x +e \right ) a +4 \sqrt {a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\right ) \sqrt {a +b}+\ln \left (\frac {2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-2 \cos \left (f x +e \right ) a +2 b}{\sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right )}\right ) a +b \ln \left (\frac {2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-2 \cos \left (f x +e \right ) a +2 b}{\sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right )}\right )-\ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+\cos \left (f x +e \right ) a +b \right )}{-1+\cos \left (f x +e \right )}\right ) a -\ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+\cos \left (f x +e \right ) a +b \right )}{-1+\cos \left (f x +e \right )}\right ) b \right ) \cos \left (f x +e \right )}{2 f \sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(540\)

input
int(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/(a+b)^(1/2)*(a+b*sec(f*x+e)^2)^(1/2)*(2*a^(1/2)*ln(4*cos(f*x+e)*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+4*cos(f*x+e)*a+4*a^(1/2)*( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*(a+b)^(1/2)+ln(2/(a+b)^(1/2)*( 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f* 
x+e)))*a+b*ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*( 
a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1 
/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))-ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+cos(f*x+e)))*a-ln(-4*(((b+a*cos(f*x+ 
e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/( 
1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+cos(f*x+e)))*b)*cos 
(f*x+e)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)
 
3.4.79.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 194 vs. \(2 (58) = 116\).

Time = 0.42 (sec) , antiderivative size = 963, normalized size of antiderivative = 13.76 \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/8*(sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160* 
a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x 
 + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x 
+ e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 2*sqrt(a + 
b)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x 
 + e)^2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b 
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x 
 + e)^2 + 1)))/f, 1/8*(4*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 
 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b 
)*cos(f*x + e)^2 + a*b + b^2)) + sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256* 
a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^ 
2 + b^4 + 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*co 
s(f*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos 
(f*x + e)^2)))/f, -1/4*(sqrt(-a)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b* 
cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2) 
/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - sqrt(a + b)*lo 
g(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e) 
^2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqr 
t((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x + e) 
^2 + 1)))/f, -1/4*(sqrt(-a)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*co...
 
3.4.79.6 Sympy [F]

\[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \cot {\left (e + f x \right )}\, dx \]

input
integrate(cot(f*x+e)*(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x), x)
 
3.4.79.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.60 (sec) , antiderivative size = 3317, normalized size of antiderivative = 47.39 \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
1/4*(a^(3/2)*log(4*sqrt(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 
4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4 
*e)*sin(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 
2*(a^2 + 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a 
*b)*cos(2*f*x + 2*e))*a*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*s 
in(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^2 
 + 4*sqrt(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b 
 + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin(2*f*x 
+ 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^ 
2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos(2*f*x 
+ 2*e))*a*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e 
), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^2 + 16*(a^2*cos 
(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f 
*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*(a^2 + 
 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 2*a*b)*cos(2* 
f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos(2*f*x + 2*e))^(1/4)*(a 
+ b)*sqrt(a)*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 
2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a)) + 16*a^2 + 3 
2*a*b + 16*b^2) - 2*sqrt(a + b)*a*log(4*(4*sqrt(a^2*cos(4*f*x + 4*e)^2 + a 
^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*...
 
3.4.79.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 402 vs. \(2 (58) = 116\).

Time = 0.69 (sec) , antiderivative size = 402, normalized size of antiderivative = 5.74 \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {{\left (\frac {4 \, a \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} + \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b} \right |}\right ) - \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b} \right |}\right ) + \sqrt {a + b} \log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )\right )} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{2 \, f} \]

input
integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
-1/2*(4*a*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2 
*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 
2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))/sqrt(-a) + sq 
rt(a + b)*log(abs(-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x 
 + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b* 
tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))) - sqrt(a + b)*log(abs(-sqr 
t(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/ 
2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 
 + a + b) - sqrt(a + b))) + sqrt(a + b)*log(abs((sqrt(a + b)*tan(1/2*f*x + 
 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a 
*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a + b) - s 
qrt(a + b)*(a - b))))*sgn(cos(f*x + e))/f
 
3.4.79.9 Mupad [F(-1)]

Timed out. \[ \int \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \mathrm {cot}\left (e+f\,x\right )\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

input
int(cot(e + f*x)*(a + b/cos(e + f*x)^2)^(1/2),x)
 
output
int(cot(e + f*x)*(a + b/cos(e + f*x)^2)^(1/2), x)